

The Rayleigh criterion

Fig1: The sum of the two peaks gives two individual peaks

Fig2: The sum of the two peaks merges into a single peak

The focal of the telescope doesn't change the resolution limit

the resolution is limited by atmospheric seeing

The Adaptive Optics System

First image of an exoplanet

(NACO adaptive-optics)

Star (Brown Dwarf)

planet

Name	<u>2M1207 b</u>
Discovered in	2004
Mass	5 (± 1) M _J
*-Planet Dist. (proj.)	41 (± 5) <i>AU</i>
Radius	1.5 R _J

Name	2M1207
Distance	53 (± 6) pc
Spectral Type	M8
Apparent Magnitude	J = 13.00
Mass	0.025 M _{sun}
Right Asc. Coord.	12 07 33
Decl. Coord.	-39 32 54

The limit of the adaptive optics

All the things we know about stars and exoplanet come from the spectroscopy

ELODIE spectrum

Image CCD 1024x1024 obtenue avec ELODIE. Les 67 ordres correspondant à la fibre étoile sont visibles. Les couleurs affichés correspondent approximativement au domaine spectral couvert (3850 - 6850 Å).

Interferometry

First steps toward the image of stars

The VLT Array on the Paranal Mountain

Principle of the interferometry

Van-Cittert Zernike theorem

$$V(u,v) = \frac{\int \int I(\alpha,\beta) \exp^{-2i\pi(\alpha u + \beta v)} d\alpha d\beta}{\int \int I(\alpha,\beta) d\alpha d\beta}$$

$$I(\alpha, \beta) = Io \text{ if } r = \sqrt{\alpha^2 + \beta^2} \le \frac{\theta}{2}$$

 $I(\alpha, \beta) = 0, \text{ otherwise}$

TF
$$V(B) = \frac{J1(\pi\theta B)}{\pi\theta B} \text{ with } B = \sqrt{u^2 + v^2}$$

Star diameter: $\theta=1.22\lambda/B$

Binary (unresolved)

Closure Phase

Phase closure:

Observation example of mira stars with IOTA

Fig. 1: Characteristic spectrum of Mira stars (Lancon & Wood 2000)

Les modèles

Fig.2. Model of the star surrounded by a thin molecular layer. θ is the angle between the radius vector and the line of sight at the layer surface.

Perrin et al. 2004, A&A, 426, 279

Optics in the gondola

The corrector of spherical aberration (Mertz)

Conclusion

