High Resolution Spectroscopy

NEON School July 23 - August 5, 2006

Philippe Mathias Observatoire de la Côte d'Azur Dept. GEMINI

Spectrographs

Contains:

- a slit
- a disperser element
- a detector

A Schematic Diagram of a Slit Spectrograph

Double slit interference

Schematic grating

Grating equations (1/2)

Incident wave equation:
$$F(x,t) = F_0(t) \exp\left(\frac{2\pi i x \sin \alpha}{\lambda}\right)$$

Transmission function: G(x)=1 if $x \in b$, 0 if $x \notin b$

Resulting wave function:
$$g(\beta) = \int_{-\infty}^{+\infty} F(x,t) G(x) \exp\left(\frac{2i\pi\sin\beta}{\lambda}\right) dx$$

 $g(\beta) = F_0(t) \int_{-\infty}^{+\infty} G(x) \exp\left(\frac{2i\pi x}{\lambda}(\sin\alpha + \sin\beta)\right) dx$

which is the TF of G(x)

Grating equations (2/2)

The maxima of $g(\beta)$ are for $(\sin \alpha + \sin \beta) - \frac{m\lambda}{d} = 0$ where m is the grating order

$$\frac{m\,\lambda}{d} = \sin\alpha + \sin\beta$$

The angular dispersion is thus:

$$\frac{d \beta}{d \lambda} = \frac{m}{d \cos \beta}$$

Diffraction gratings

Ex: Blazed grating at order 1

Blaze & Echelle gratings

Blazed angle of a grating: allows to redirect maximum light towards a given order

Echelle grating: small incidence angle: allows to work in a large order: increase of spectral resolution

Diffraction envelope

.

Echelle spectrum

Gratings...

Instrumental profile

The spectrograph is not perfect: the light beam is affected by various phenomena such as diffusion, diffraction, resolution, aberrations...

One need to determine the instrumental profile:

What do we measure?

Resolvance of a grating

Follows the Rayleigh criterion: 2 wavelengths are resolved when the maximum of ones lies at the first minimum of the other :

Dispersion and resolution

The resolving power is defined as: $R = \frac{\lambda}{\Delta \lambda}$ where $\Delta \lambda$ is the

smallest wavelength difference

From the dispersion equation: R = m N

NOTE: R is independent of the wavelength:

$$R = \frac{\lambda}{\Delta \lambda} = \frac{\nu}{\Delta \nu} = \frac{E}{\Delta E} = \frac{c}{\Delta \nu}$$

Choice of the resolving power

Practical criterion: choose $\Delta \lambda \ll$ smallest structure to be observed

Most of astrophysical media produce lines larger than the Doppler width:

$$W_D[\hat{A}] = 7.162 \, 10^{-7} \, \lambda \, \sqrt{T/\mu}$$

Where μ is the atomic mass \longrightarrow temperature dependence

Temperature dependence

T _e (K)	10 ²	10 ³	104	105	10 ⁶
Typical for	cool interstellar medium circumstellar shells planets		tospheres	transition regions	coronae
			shells around hot stars		
FWHM(Å) for HB	0.06	0.13	0.36		
R =	80 000	40 000	10 000		
FWHM(Å) for Fe I at 5000 Å	0.005	0.015	0.05	0.15	0.48
R =	1 000 000	300 000	100 000	30 000	10 000

Choice of the resolving power

Choosing a too low resolution:

- influence of noise
- influence of blends

Importance of R

Importance of R

 $R = 300\ 000$

R = 23 000

R = 8000

Reduction : main steps

- > offset subtraction
- → dark subtraction
- [orders localisation]
- Flat-field correction
- > wavelength calibration
- cosmic remove
- → flux calibration or continuum normalization
- * deconvolution from instrumental profile

Velocity and light-time correction

Heliocentric time = Earth's time + light-time correction

light-time correction = $0^{d}.0057756 (X \cos \alpha \cos \delta + Y \sin \alpha \cos \delta + Z \sin \delta)$

where X, Y and Z are the equatorial rectangular coordinates of the Sun $0^{d}.0057756 = 1$ au/c = 8.317 mn (c = 299792.5 km/s)

Telluric lines

The *black sky* has a spectrum due to the:

· earth atmosphere (natural and artificial light)

• other sources, mainly the diffused solar spectrum (moon, zodiacal light) Can be neglected for objects having V < 13

Water telluric lines

Cosmic rays

→ mainly due to H & He nuclei, but also e, μ , π ...

> better to make a few short exposures rather than a unique long one

Natural broadening

Results from the intrinsic width of the energy levels

Pressure broadening

- Also called collision broadening
- Due to the perturbation of the orbitals by nearby atoms, ions, electrons...
- Orbitals also perturbed by electric field of ionized particles
- Collision with H atom modelled by linear Stark effect: energy levels splitting due to electric field
- Leads to a Lorentzian profile

Doppler broadening

Total broadening

Generally: $\gamma_N \ll \gamma_D < \gamma_P$

The total profile is obtained through the convolution of the different process: $G_1 * G_2 = G_{tot}$ with $W_{tot} = \sqrt{W_1^2 + W_2^2}$ $L_1 * L_2 = L_{tot}$ with $W_{tot} = W_1 + W_2$ $L_1 * G_2 =$ Voigt profile, with $W_{tot} = f(W_1, W_2)$

The Voigt profile

The Voigt profile

Line flux variations

Contribution function

Contribution function

Abundances

Saturated lines: asymptotic growth: $W \!=\! f\left(A\right)$

In the wings:

$$W \propto \sqrt{A}$$

Rotation profile

Given by (no differential motion): $a(\lambda) = \frac{2}{\pi b} \sqrt{1 - \left(\frac{\Delta \lambda}{b}\right)^2}$ with $b = \lambda_0 \frac{v \sin i}{c}$

One has to find the zero of the Bessel function

Rotational broadening

Rotation broadening

v sin i = 160 km/s

 $v \sin i = 36 \text{ km/s}$

Microturbulence and convection

Measuring...

Large scale motions

P Cygni profile:

Non radial pulsations

(l, m) = (6, 0)

(l, m) = (6, 4)

Non radial pulsations

inclinaison: 90

Wave propagation

Velocity gradient

Shock waves

BW Vulpec

Doppler imaging

Composite spectra

Composite spectra: PMS

3 components: late type stars [abs] dense chromosphere [em] CS gas [em]

Spectrograph

ESO (3.6m)	HARPS	CrossDisp	visible	120,000		
CTIO (4 m)	échelle	réseau	211	31,000		
ESO (3.6 m)	CASPEC	réseau	240	40,000		
NTT (3.5 m)	EMMI	réseau	300	60,000		
AAT (3.9 m)	UCLES	prisme	230	50,000		
Gemini (8 m)	HROS	prisme	?	?		
VLT (8 m)	UVES	réseau	170	40,000		
	Hémisphère Sud					
KPNO (4 m)	échelle	réseau	215	40,000		
Lick (3 m)	Hamilton	prisme	650	48,000		
WHT (4.2 m)	UES	prisme	240	50,000		
Hale (5 m)	fibre	prisme	300	40,000		
Subaru (8 m)	HDS	réseau	<300	?		
Keck (10 m)	HIRES	réseau	200	40,000		
CFH (3.6 m)	ESPADONS	prisme	620	50,000		
	Hémisphère	Nord				
télescope	spectrographe	dispersion croisée	$\Delta\lambda~({ m nm})$	R		

SOPHIE

Correlation profile

Z Oph, ϕ = 0.08

Fourier Transform Spectrograph

Mainly used in the IR

* excellent instrumental profile

no scattered light

fixed mirror

The SIAMOIS project

To be located at DOME C, at the focus of a 40 cm telescope Purpose: asteroseismology of solar-like stars

Spectro-polarimetry

ESPADONS, NARVAL..

Astrophysical interests: - reflected light by solid surfaces (Moon, Mars...)

- small grain scattering (zodiacal light, reflexion nebulae...
- molecules scattering (giant planets...)
- free-free scattering (corona, hot stars envelopes ...)
- Hanle effect (chromosphere, corona...)
- Zeeman effect (magnetism, spots...)

HD 191612, LSD profiles, ESPaDOnS, 2005 Jun. 22-25

Spectro-interferometry

REGAIN (GI2T), AMBER (VLTI), VEGA (CHARA) spectral & spatial resolution

Observation of 70 Aql

Medium Spectral Resolution (R=1200)

UT2

Int

UT1

UT3

