Actuality of Exoplanets Search

How detect extrasolar planets ?

Two main difficulties:

1 - A tiny angular separation

0.75 arcsec

Sun - Jupiter at 4 light years

$$
\rightarrow 4 "
$$

$$
\text { Sun - Jupiter at } 100 \text { light years }
$$

$$
\rightarrow 0.15 "
$$

```
Sun - Earth at }100\mathrm{ light years
O.03"
```

0.12 arcsec

How detect extrasolar planets ?

Two main difficulties:

1 - A tiny angular separation
2 - A huge contrast in luminosity

The star is up to 1 billion times brighter than the planet

$$
\mathrm{F}_{\mathrm{p}} / \mathrm{F}_{\text {star }} \sim\left(\mathrm{R}_{\mathrm{p}} / \mathrm{a}\right)^{2}
$$

One solution : detect the dynamical perturbation induced of the star

Dynamical pertubation of Jupiter on the Sun

Detection by radial velocity Based on the Doppler-Fizeau Effect

Keplerian orbit parameters

$$
\begin{aligned}
& V_{\text {rad }}=\frac{m}{M_{*}+m} \cdot \frac{2 \pi a \sin i}{P \sqrt{1-e^{2}}}[\cos (\nu(t)+w)+e \cos w] \\
& V_{\text {rad }}=V_{0}+K \cdot[\cos (v(t)+w)+e \cos w] \\
& \text { Orbital fit } \rightarrow 6 \text { parameters } \\
& \text { of keplerian orbit : } \\
& \mathrm{V}_{0}, \mathrm{~K}, \mathrm{P}, \mathrm{e}, \mathrm{~T}_{\mathrm{p}}, \mathrm{~W}
\end{aligned}
$$

$$
\begin{aligned}
& K[\mathrm{~m} / \mathrm{s}]=28.45 \cdot \frac{m\left[\mathrm{M}_{\text {Sup }}\right] \sin i}{\sqrt{a[\mathrm{AU}] \cdot M_{*}\left[\mathrm{M}_{\mathrm{SUN}}\right]}} \\
& K[\mathrm{~m} / \mathrm{s}]=203 \cdot \frac{m\left[M_{\text {Sup }}\right] \sin i}{M_{*}\left[M_{\text {SUN }}\right]^{2 / 3} \cdot P[d]^{1 / 3}}
\end{aligned}
$$

Improvement of Doppler techniques

Another solution :

Detect the shadow of the planet
 - photometric transit -

Transit Probability

$$
p=\frac{R_{*}}{a}
$$

For $1 \mathrm{R}_{\text {sun }}$ and $1 \mathrm{M}_{\text {sun }} \rightarrow$

$$
p[\%]=\frac{24}{P^{2 / 3}[\text { days }]}
$$

$$
p=3 \text { days } \rightarrow 11 \% \quad p=10 \text { days } \rightarrow 5 \%
$$

$$
p=100 \text { days } \rightarrow 1 \% \quad p=365 \text { days } \rightarrow 0.47 \%
$$

Duration $\Delta T \sim R P^{1 / 3}(\mathrm{~m}+\mathrm{M})^{-1 / 3} \sqrt{ } 1-\mathrm{b}^{2}$

3 relations :

$$
\begin{array}{ll}
\Delta \mathrm{T} \sim \mathrm{R} \mathrm{P}^{1 / 3} \mathrm{M}^{-1 / 3} \sqrt{ } 1-\mathrm{b}^{2} & \mathrm{r} / \mathrm{R} \\
\mathrm{~d} \sim(\mathrm{r} / \mathrm{R})^{2} & \mathrm{R} \mathrm{M}^{-1 / 3} \\
\mathrm{dt} \sim \Delta \mathrm{Tr} / \mathrm{R} \sqrt{ } 1-\mathrm{b}^{2} & \mathrm{~b}
\end{array}
$$

.... but 5 unknowns :
r, R, m, M, b

Light curve fit:

Radial velocity
$\mathrm{m} / \mathrm{M}^{2 / 3}$
Spectroscopy
M, R

Gravitätional miçrolensing

Pulsar timing

$$
\tau[\mathrm{ms}]=1.6 \cdot \frac{M_{p}\left[M_{\text {Earth }}\right]}{M_{\text {pulsar }}^{4 / 3}\left[M_{\text {Sun }}\right]} \cdot P^{2 / 3}[\text { year }]
$$

1995 : discovery of 51 Peg b

 First extrasolar planet orbiting a solar-type star

$$
\begin{aligned}
& \mathrm{K}=59 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
& \mathrm{P}=4.23 \text { days }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{m}_{p} \cdot \sin i=0.47 \mathrm{M}_{\mathrm{J}} \\
& \mathrm{a}=0.05 \mathrm{AU}
\end{aligned}
$$

Status : 200 known extrasolar planets

Main properties of orbital parameters

0) A huge diversity of orbital parameters (P, a, e)
1) no massive planets ($>2 \mathrm{M}_{\text {Jup }}$) with short period ($\mathrm{P}<100 \mathrm{~d}$)
2) maximum mass increases with orbital distance
3) Lack of planets between 10 et 100 days
4) Lack of planets less massive than Jupiter with long period ($\mathrm{P}>100 \mathrm{~d}$)
5) Peak of planets with short period (3-10 d)
6) Nb of planets increases with period (for $\mathrm{P}>100 \mathrm{~d}$)

Migration of HJ due to tidal interaction with disk More efficient for low mass planets

Some evidences of planetary evaporation

20 multiple systems ~ 25% of the exoplanets

Ups And c

Ups And b

Upsilon Andromedae

Ups And d

Seems to favor the eccentricity

Some resonant systems

Properties of exoplanet-host stars

1) Planet host stars have higher metallicity
2) Probability to find a planete increase with metallicity
\rightarrow Over metallicity seems to favour the planetary formation
! This is not the case for Neptune and Big-Earth like planets

19 planets around binaries

1) Massive planets ($\mathrm{msini}>2 \mathrm{M}_{\mathrm{Jup}}$) with short periods are around binaries
2) Short period planets orbiting binaries have low eccentricity
\rightarrow Migration process is different in binaries

Mass of the central star

Only 5 planets detected around M dwarves ($\mathrm{M}<0.6$ Msun) including 3 Hot Neptunes.
\rightarrow Smaller disk around M dwarves do not favor the formation and the migration of giant planet

Toward the low-mass planets

All stars are singing

Venus of mu Arae

$$
\begin{aligned}
& \mathrm{P}=9.55 \mathrm{~d} \\
& \mathrm{~K}=4.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\mathrm{m} . \operatorname{sini}=14 \text { Mearth }
$$

$$
\mathrm{a}=0.09 \mathrm{AU}
$$

$$
\mathrm{O}-\mathrm{C}=0.9 \mathrm{~m} / \mathrm{s}
$$

The trio of Neptunes

$P=8.7 / 31.6 / 197$ days
$a \quad=0.08 / 0.19 / 0.63 \mathrm{AU}$
$m . \operatorname{sini}=10.2 / 11.8 / 18.1 \quad \mathrm{M}_{\text {Earth }}$

Main limitations of RV method

\author{

- Guiding noise
 1. Instrumental limitations - Wavelength calibration
 - CCD defaults
}

2. Stellar limitations

-Seismic activity
-Photospheric activity
-Blend
3. Photon noise limitations

4 exoplanets found by microlensing including 2 big-earth planets

OGLE05-169L
m ~ 13 Mearth $\mathrm{a} \sim 2.8 \mathrm{UA}$

First image of a young giant planet orbiting a brown dwarf

2MASSWJ1207334-393254

10 characterized planets

10 transiting extrasolar planets

 Characterized by photometry and radial velocity

HD189733b detected and characterized at OHP

$$
\begin{aligned}
& \mathrm{P}=2.22 \text { days } \\
& \mathrm{m}=1.15 \mathrm{M}_{\text {Jup }} \\
& \mathrm{r}=1.2 \mathrm{R}_{\text {Jup }}
\end{aligned}
$$

Spectroscopic transit of HD189733 (Rossiter - McLaughlin effect)

Mass - radius relation of the 10 transiting extrasolar planets

Systeme Etaile-Flanete vu de dessus Atmosphere Evaporation of HD209458b

Spectre

Spitzer IR anti-transits of HD209458b, Tres-1 and HD189733b

Extrasolar Planet Eclipse [artist's rendition]
ssc2005-09b

From planets to low-mass stars

OGLE-TR-122b : A planet-size star

Photometry + Radial Velocity + Spectroscopy Fully complementary methods

$$
\begin{aligned}
& \text { a, P, e, } \mathrm{T}_{0}, \mathrm{~b}, \alpha \\
& \mathrm{~m}_{\mathrm{p}}, \mathrm{r}_{\mathrm{p}}, \rho, \mathrm{~m}_{\text {core }}, \mathrm{T}, \text { evap. }, \ldots \\
& \mathrm{R}_{*}, \mathrm{M}_{*},[\mathrm{Fe} / \mathrm{H}], v \operatorname{sini}, \mathrm{R}_{\mathrm{HK}}^{\prime}, \ldots
\end{aligned}
$$

\rightarrow Constraints for processes of formation and evolution
\rightarrow Constraints for composition and internal structure

Lack of efficiency of photometric surveys

Transit Search Programmes

Pro	gramme	$\begin{gathered} \mathrm{D} \\ (\mathrm{~cm}) \end{gathered}$	focal ratio	$\begin{aligned} & \mathbf{W}^{0.5} \\ & (\mathrm{deg}) \end{aligned}$	$\begin{gathered} \mathbf{N}_{\mathbf{x}} \\ (\text { kpix }) \end{gathered}$	$\begin{gathered} \mathrm{N}_{\mathbf{y}} \\ (\mathrm{kpix}) \end{gathered}$	no. of CCDs	$\begin{gathered} \text { pixel } \\ \text { (arcsec) } \end{gathered}$	sky mag	star mag	$\underset{(\mathrm{pc})}{\mathrm{d}}$	$\begin{gathered} \text { stars } \\ \left(\mathbf{x} 10^{3}\right) \end{gathered}$	planets /month
$\underline{1}$	PASS	2.5	2.0	127.25	2.0	2.0	15	57.75	6.8	9.4	83	18	6.3-0
$\underline{2}$	WASP0	6.4	2.8	8.84	2.0	2.0	1	15.54	9.6	11.8	246	2	0.8-8
$\underline{3}$	ASAS-3	7.1	2.8	11.21	2.0	2.0	2	13.93	9.9	12.0	272	5	1.70
$\underline{4}$	RAPTOR	7.0	1.2	55.32	2.0	2.0	8	34.38	7.9	11.1	179	33	$1 \uparrow .70$
$\underline{5}$	TrES	10.0	2.9	10.51	2.0	2.0	3	10.67	10.5	12.7	362	10	3-5-1
$\underline{6}$	HATnet	11.1	1.8	19.42	2.0	2.0	6	13.94	9.9	12.5	338	28	9.70
$\underline{7}$	SWASP	11.1	1.8	31.71	2.0	2.0	16	13.94	9.9	12.5	338	74	$26.0 \quad 0$
$\overline{8}$	Vulcan	12.0	2.5	7.04	4.0	4.0	1	6.19	11.6	13.4	497	12	4-1- 0
$\overline{9}$	RAPTOR-F	14.0	2.8	5.93	2.0	2.0	2	7.37	11.3	13.4	498	8	2-9-0
$\underline{10}$	BEST	19.5	2.7	3.01	2.0	2.0	1	5.29	12.0	14.2	668	5	1:8-0
$\underline{11}$	Vulcan-S	20.3	1.5	6.94	4.0	4.0	1	6.10	11.7	14.1	642	24	8-5- 0
$\underline{12}$	SSO/APT	50.0	1.0	7.00	2.9	5.9	2	4.20	12.5	15.5	1103	126	$43.8 \quad 0$
$\underline{13}$	RATS	67.0	3.0	1.31	2.0	2.0	1	2.30	13.8	16.4	1548	12	$4: 20$
$\underline{14}$	TeMPEST	76.0	3.0	0.77	2.0	2.0	1	1.35	15.0	17.1	1944	8	2-9-0
$\underline{15}$	EXPLORE-OC	101.6	7.0	0.32	2.0	3.3	1	0.44	17.1	18.4	2881	5	1:6 0
$\underline{16}$	PISCES	120.0	7.7	0.38	2.0	2.0	4	0.33	17.1	18.6	3045	8	2-7- 0
$\underline{17}$	ASP	130.0	13.5	0.17	2.0	2.0	1	0.30	17.1	18.7	3125	2	0-6-0
$\underline{18}$	OGLE-III	130.0	9.2	0.59	2.0	4.0	8	0.26	17.1	18.7	3125	20	7-1- 5
$\underline{19}$	STEPSS	240.0	0.0	0.41	4.0	2.0	8	0.18	17.1	19.5	3757	17	5-9- 0
$\underline{20}$	INT	250.0	3.0	0.60	2.0	4.0	4	0.37	17.1	19.5	3800	37	13.10
$\underline{21}$	ONC	254.0	3.3	0.53	2.0	4.0	4	0.33	17.1	19.5	3817	30	10.50
$\underline{22}$	EXPLORE-N	360.0	4.2	0.57	2.0	4.0	12	0.21	17.1	19.9	4196	46	16.20
$\underline{23}$	EXPLORE-S	400.0	2.9	0.61	2.0	4.0	8	0.27	17.1	20.0	4313	58	20.1 0
Total number of planets/month:													2056

More than 200 planets per month were expected
Up to day a total of only 7 detections

No transiting planet detected with a depth < 1.1\%

Transit Depth
OGLE-113 2.9\% Tres-1 2.3\%
Xo-1 2.0\%
OGLE-111 1.9\%
OGLE-10 1.9\%
OGLE-56 1.3 \%
OGLE-132 1.1%

1) Insufficient time coverage
2) Difficulties to reach the mmag precision

Photometric transit of HD209458b

$1.4 \mathrm{R}_{\mathrm{Jup}}$
$0.69 \mathrm{M}_{\text {Jup }}$
0.31 g. cm^{-3}
0.047 A.U.
3.524 days

COROT

Space photometric detection of planetary transiting candidates
~100'000 stars observed during 150 days
~ 100 Hot Jupiters
~ 10 Hot Neptunes

First laboratory spectrum

First stellar spectrum
 [51Peg]

Expected performances

Schedule

31 July - 7 August : 1th commissioning
21-28 August : 2d commissioning
September - October : Science verification
1th November : Opening to community
Consortium Exoplanet Search in North Hemisphere 22 Co-Is from France and Switzerland 200 nights per years

