Actuality of Exoplanets Search

François Bouchy OHP - IAP

How detect extrasolar planets ?

Two main difficulties :

1 – A tiny angular separation

Sun – Jupiter at 4 light years \rightarrow 4"

Sun – Jupiter at 100 light years $\rightarrow 0.15$ "

Sun – Earth at 100 light years $\rightarrow 0.03$ "

0.75 arcsec

0.12 arcsec

How detect extrasolar planets ?

Two main difficulties :

1 – A tiny angular separation2 – A huge contrast in luminosity

The star is up to 1 billion times brighter than the planet

 $F_p/F_{star} \sim (R_p/a)^2$

One solution : detect the dynamical perturbation induced of the star

Detection by radial velocity Based on the Doppler-Fizeau Effect

Keplerian orbit parameters

$$V_{rad} = \frac{m}{M_* + m} \cdot \frac{2\pi a \sin i}{P\sqrt{1 - e^2}} [\cos(v(t) + w) + e \cos w]$$

$$V_{rad} = V_0 + K \cdot [\cos(v(t) + w) + e \cos w]$$
Orbital fit \rightarrow 6 parameters
of keplerian orbit :
 V_0 , K, P, e, T_p, w

$$K[m/s] = 28.45 \cdot \frac{m [M_{Jup}] \sin i}{\sqrt{a[AU] \cdot M_*[M_{SUN}]}}$$

$$K[m/s] = 203 \cdot \frac{m \ [M_{Jup}] \sin i}{M_* [M_{SUN}]^{2/3} \cdot P[d]^{1/3}}$$

Improvement of Doppler techniques

Another solution : Detect the shadow of the planet - photometric transit -

Transit Probability $p = \frac{R_*}{a}$

For 1 R_{sun} and 1 M_{sun}
$$\rightarrow$$
 $p[\%] = \frac{24}{P^{2/3}[days]}$

 $p = 3 \text{ days} \rightarrow 11 \%$ $p = 10 \text{ days} \rightarrow 5 \%$ $p = 100 \text{ days} \rightarrow 1 \%$ $p = 365 \text{ days} \rightarrow 0.47 \%$

Duration $\Delta T \sim R P^{1/3} (m+M)^{-1/3} \sqrt{1-b^2}$

Depth d ~ $(r/R)^2$

Ingress/Egress dt ~ $\Delta T r / R \sqrt{1-b^2}$ 3 relations : $\Delta T \sim R P^{1/3} M^{-1/3} \sqrt{1-b^2}$ $d \sim (r/R)^2$ $dt \sim \Delta T r / R \sqrt{1-b^2}$

.... but 5 unknowns : r, R, m, M, b Light curve fit: r/R $R M^{-1/3}$ b **Radial velocity** $m / M^{2/3}$ **Spectroscopy** M, R

Gravitational microlensing

Pulsar timing

 $\tau[ms] = 1.6 \cdot \frac{M_p[M_{Earth}]}{M_{pulsar}^{4/3}[M_{Sun}]} \cdot P^{2/3}[year]$

1995 : discovery of 51 Peg b First extrasolar planet orbiting a solar-type star

Status : 200 known extrasolar planets

 \bigcirc

 \bigcirc

 \bigcirc

Main properties of orbital parameters

- 0) A huge diversity of orbital parameters (P, a, e)
- 1) no massive planets (> $2M_{Jup}$) with short period (P<100d)
- 2) maximum mass increases with orbital distance
- 3) Lack of planets between 10 et 100 days
- 4) Lack of planets less massive than Jupiter with long period (P>100d)
- 5) Peak of planets with short period (3-10 d)
- 6) Nb of planets increases with period (for P>100 d)

Migration of HJ due to tidal interaction with disk More efficient for low mass planets

Some evidences of planetary fall

Some evidences of planetary evaporation

20 multiple systems ~ **25** % of the exoplanets

Seems to favor the eccentricity

Some resonant systems

Properties of exoplanet-host stars

1) Planet host stars have higher metallicity

2) Probability to find a planete increase with metallicity

 \rightarrow Over metallicity seems to favour the planetary formation

! This is not the case for Neptune and Big-Earth like planets

19 planets around binaries

- 1) Massive planets (msini > 2 M_{Jup}) with short periods are around binaries
- 2) Short period planets orbiting binaries have low eccentricity
- \rightarrow Migration process is different in binaries

Mass of the central star

3 massive planets detected around F stars

Only 5 planets detected around M dwarves (M < 0.6 Msun) including 3 Hot Neptunes.

 \rightarrow Smaller disk around M dwarves do not favor the formation and the migration of giant planet

Toward the low-mass planets

 \bigcirc

 \bigcirc

 \bigcirc

All stars are singing

Venus of mu Arae

P = 9.55 d K = 4.1 m/s m.sini = 14 Mearth a = 0.09 AU O-C = 0.9 m/s

The trio of Neptunes

P = 8.7 / 31.6 / 197 days a = 0.08 / 0.19 / 0.63 AU $m.\sin i = 10.2 / 11.8 / 18.1 \text{ M}_{Earth}$

Main limitations of RV method

1. Instrumental limitations

2. Stellar limitations

- Guiding noise
- Wavelength calibration
- CCD defaults

-Seismic activity-Photospheric activity-Blend

3. Photon noise limitations

Possibility to reach 30 cm/s these next years

4 exoplanets found by microlensing including 2 big-earth planets

First image of a young giant planet orbiting a brown dwarf

2MASSWJ1207334-393254

10 characterized planets

 \bigcirc

 \bigcirc

 \bigcirc

10 transiting extrasolar planets Characterized by photometry and radial velocity

HD189733b detected and characterized at OHP

P = 2.22 days $m = 1.15 \text{ M}_{Jup}$ $r = 1.2 \text{ R}_{Jup}$

Spectroscopic transit of HD189733 (Rossiter - McLaughlin effect)

Mass – radius relation of the 10 transiting extrasolar planets

Atmosphere Evaporation of HD209458b

Planete vue de dessus

Spitzer IR anti-transits of HD209458b, Tres-1 and HD189733b

0.50 (Phase (*φ*)

0.52

0.54

0.48

0.46

0.994

From planets to low-mass stars

Photometry + Radial Velocity + Spectroscopy Fully complementary methods

a, P, e, T₀, b, α

 $m_p, r_p, \rho, m_{core}, T, evap., \dots$

R_{*}, M_{*}, [Fe/H], *v*sin*i*, R'_{HK}, ...

→Constraints for processes of formation and evolution
→Constraints for composition and internal structure

Lack of efficiency of photometric surveys

Transit Search Progran	nmes
------------------------	------

	D	£ 1		N	N				-4		stars	
Programme	D	focal	W ^{0.5}	N _x	Ny	no. of	pixel	sky	star	d		planets
	(cm)	ratio	(deg)	(kpix)	(kpix)	CCDs	(arcsec)	mag	mag	(pc)	$(x10^3)$	/month
		2.0			2.0	15		6.8	9.4	83	18	6 :3- 0
			8.84		2.0	1		9.6	11.8	246	2	0.8- 0
<u>3 ASAS-3</u>	7.1	2.8	11.21	2.0	2.0	2	13.93	9.9	12.0	272	5	1:7- 0
<u>4</u> <u>RAPTOR</u>			55.32	2.0	2.0	8	34.38	7.9	11.1	179	33	1 1. 7 0
		2.9	10.51		2.0	3	10.67	10.5	12.7	362	10	3.5 1
<u>6</u> HATnet	11.1	1.8	19.42	2.0	2.0	6	13.94	9.9	12.5	338	28	9:7- 0
	11.1	1.8	31.71	2.0	2.0	16	13.94	9.9	12.5	338	74	2 6. 0 0
<u>8</u> Vulcan	12.0	2.5	7.04	4.0	4.0	1	6.19	11.6	13.4	497	12	4 :1- 0
<u>9</u> <u>RAPTOR-F</u>			5.93	2.0	2.0	2	7.37	11.3	13.4	498	8	2 .9 - 0
<u>10</u> BEST	19.5	2.7	3.01	2.0	2.0	1	5.29	12.0	14.2	668	5	1:8- 0
<u>11</u> Vulcan-S	20.3	1.5	6.94	4.0	4.0	1	6.10	11.7	14.1	642	24	8 .5 - 0
12 SSO/APT	50.0	1.0	7.00	2.9	5.9	2	4.20	12.5	15.5	1103	126	4 3. 8 0
13 RATS	67.0	3.0	1.31	2.0	2.0	1	2.30	13.8	16.4	1548	12	4 :2- 0
	76.0	3.0	0.77	2.0	2.0	1	1.35	15.0	17.1	1944	8	2 :9 - 0
15 EXPLORE-OC	101.6	7.0	0.32	2.0	3.3	1	0.44	17.1	18.4	2881	5	1 :6 0
16 PISCES	120.0	7.7	0.38	2.0	2.0	4	0.33	17.1	18.6	3045	8	2 :7- 0
	130.0	13.5	0.17	2.0	2.0	1	0.30	17.1	18.7	3125	2	0:6 0
18 OGLE-III	130.0	9.2	0.59	2.0	4.0	8	0.26	17.1	18.7	3125	20	7 .1- 5
19 STEPSS	240.0	0.0	0.41	4.0	2.0	8	0.18	17.1	19.5	3757	17	5 .9 - 0
20 INT	250.0	3.0	0.60	2.0	4.0	4	0.37	17.1	19.5	3800	37	1 3.1 0
19 STEPSS 20 INT 21 ONC	254.0	3.3	0.53	2.0	4.0	4	0.33	17.1	19.5	3817	30	1 0.5 0
	360.0	4.2	0.57	2.0	4.0	12	0.21	17.1	19.9	4196	46	1 6. 2 0
	400.0	2.9	0.61	2.0	4.0	8	0.27	17.1	20.0	4313	58	2 0.1 0
Total number of planets/month	1											205 6

More than 200 planets per month were expected

Up to day a total of only 7 detections

No transiting planet detected with a depth < 1.1%

Transit Dept	h
OGLE-113	2.9%
Tres-1	2.3%
Xo-1	2.0%
OGLE-111	1.9%
OGLE-10	1.9%
OGLE-56	1.3 %
OGLE-132	1.1 %

1) Insufficient time coverage

2) Difficulties to reach the mmag precision

Photometric transit of HD209458b

Space photometric detection of planetary transiting candidates

~100'000 stars observed during 150 days

~ 100 Hot Jupiters~ 10 Hot Neptunes

New spectrograph on the 193-cm telescope

North Counter part of HARPS (R~70'000) ~ 2 mag more efficient than ELODIE

~ 1-2 m/s expected precision

First laboratory spectrum

First stellar spectrum [51Peg]

Expected performances

Schedule

31 July – 7 August : 1th commissioning
21 – 28 August : 2d commissioning
September – October : Science verification
1th November : Opening to community

Consortium Exoplanet Search in North Hemisphere 22 Co-Is from France and Switzerland 200 nights per years Next steps

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc