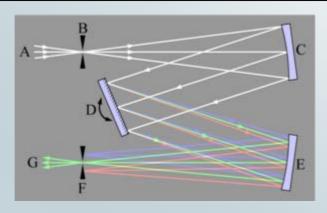
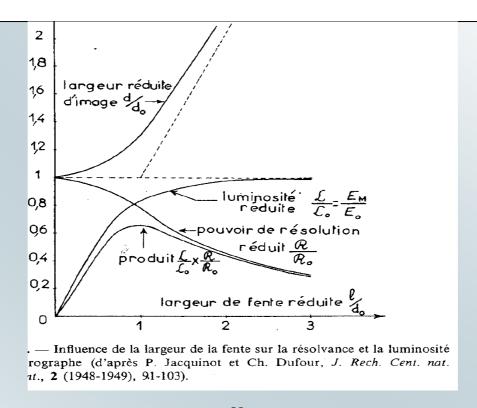

NEON School 2006 Haute-Provence

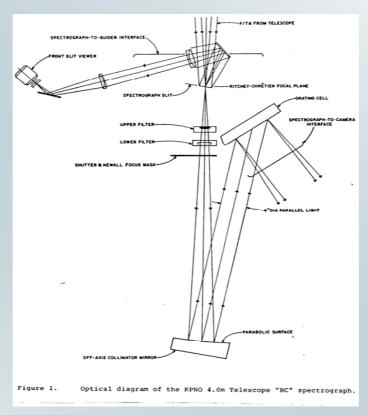
Introduction to Spectroscopic Techniques (low dispersion)


M. Dennefeld (IAP-Paris)

Principles of gratings (1)


- Grating needs to be illuminated in // beam
- Hence a collimator C and an objective O
- $\sin \theta_2 \sin \theta_1 = n k \lambda$ (k: order; n: groves/mm)
- Intrinsic resolution: Ř₀ = n k L (L size of grating)

Principles of gratings (2)


- $a = L \cos \theta_2$ (a: size of exit beam = Ø of camera)
- To \mathring{R}_0 corresponds an exit size (image of the entrance slit I_0) $d_0 = f \lambda/a$ (f: focal length of the camera)
- The exit image is the conjugate of the entrance slit
- To be resolved, we need d_o > 2 pixels, that is:
 f/a > 2 X/λ With X = ~25 μ and λ ~ 0.5 μ, this gives:
 f/a > 50 Camera not open enough! (luminosity)
 (remember, pixel was much smaller, ~3μ, in photography!)
- Thus will use d > d_o, i.e. not use full resolution of grating

Compromise with spectrographs

- If equal weight given to Ř and £, best choice is for I/d₀ = 1 (but then camera not open enough...)
- In astronomy, preference given to £, so intrinsic resolution is not usable.

Match of spectrograph to telescope (1)

But entrance slit needs also to be matched to telescope and seeing, and opened to increase light throughput.

If you open the entrance slit, you degrade the spectral resolution, i.e. one gets $\mathring{R} < \mathring{R}_0$: $\mathring{R} = \mathring{R}_0 d_0/d$

One uses a reduction factor in the spectrograph: d (exit) / I (entrance) < 1, (typically 1/6) to partly compensate.

Match of spectrograph to telescope (2)

- In the focal plane of telescope D, you need: I (entrance slit) = D $m_T \alpha$ (α seeing angle)
- Thus $\check{\mathbf{R}} = \check{\mathbf{R}}_0 \, d_0 / d = \check{\mathbf{R}}_0 \, . f \lambda / a . 1 / d \sim \check{\mathbf{R}}_0 \, \lambda / \alpha \, 1 / D$ that is for a given $\check{\mathbf{R}}$, the size of the grating (which governs $\check{\mathbf{R}}_0$) is proportional to D!

This is a problem for large telescopes!

Full formula is:

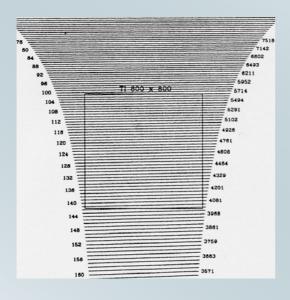
 $\dot{R}\alpha = 2 \text{ H/D } \text{tg}\beta [\cos\theta_2/\cos\theta_{1]} (anamorphism)$

Řα is the « efficiency » of the system

β blaze $~θ_2$ « R2 » grating: tg β = 2 (63°)

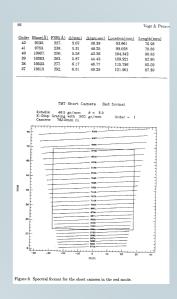
« R4 » grating: $tg \beta = 4 (75^\circ)$

Order superposition

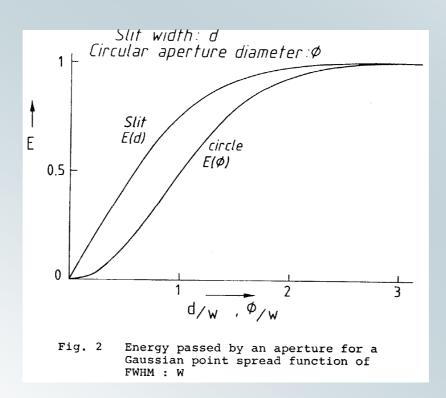

• At given θ_2 (i.e. on given pixel of detector), $k \lambda = cste$

e.g. first order red is superposed by 2. order blue.

- Use of filters to separate orders (high-pass red (cuting the blue) in the above example
- If one wants higher dispersion, go to higher orders. But overlap of orders then unavoidable (λ shift between orders too small to use filters as separators), so one needs cross-dispersion to separate orders.

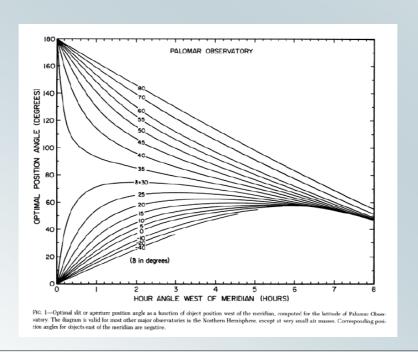

Echelle spectroscopy

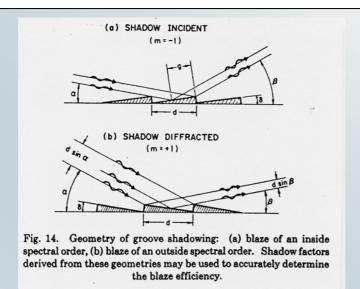
Compromise between resolution, detector size,


(here Hamilton spectr. at Lick)


... and order spacing, and sky subtraction (here HIRES at Keck)

Slit losses


- A rectangular slit does not let through all energy from a circular seeing disk! (but better than circular aperture)
- For standard stars observations, open wide the slit if you want absolute photometry!



Differential refraction

- $\Delta R(\lambda) = R(\lambda) R(5000\text{Å}) \sim \text{cste} [n(\lambda) n(5000)] \text{ tan } z$ Ex: for AM = 1.5, λ =4000 Å, $\Delta R \sim 0.70$ ": relative loss of flux Depends on P and T (altitude) and humidity Worse in the blue, negligible in the near-IR
- Use parallactic angle for slit (oriented along the refraction)
 (see diagram, after Filippenko, PASP, 1982)

Blazed gratings

- Blaze angle (δ) choosen such that max. of interferences coincides with max. of diffraction in the selected order
- Some shadowing occurs at large incidence angles, reducing a bit the efficiency

Grating Efficiency

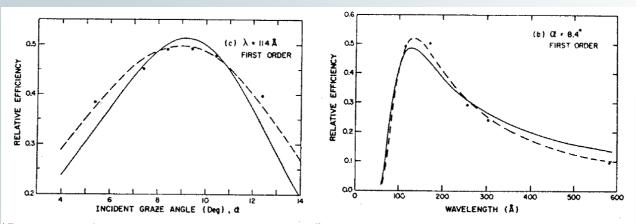
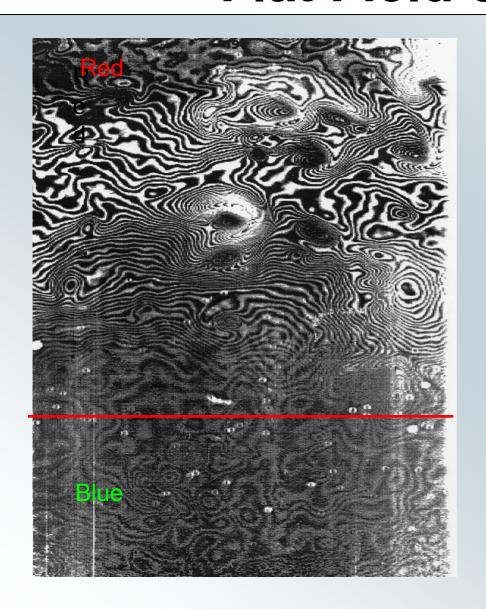
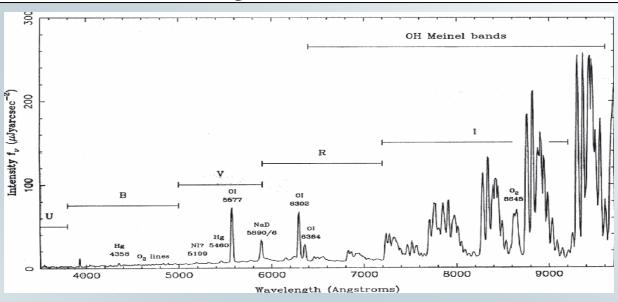
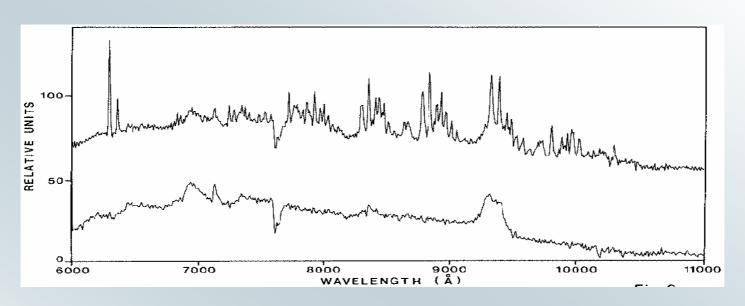



Fig. 13. Measured grating efficiencies. (a) Absolute efficiency in spectral orders 0, 1, 2, and 3 vs wavelength at an 8.4° graze angle to the grating tangent (11.4° to groove facets). The sum Σ ε_m = ε₀ + ε₁ + ε₂ + ε₃ is compared to our reflectance measurements at 11.4° of a flat witness sample (+) and those found in Ref. 38 (□). (b) Relative first-order efficiencies derived from the left-hand panel compared to theoretical curves times ~0.9. (c) Relative first-order efficiencies vs angle at λ = 114 Å compared to theoretical curves times ~0.85. (d) Zero-order relative efficiencies vs wavelength at an 8.4° graze angle compared to a theoretical curve times 1.06.


- Blazed gratings are efficient close to blaze angle
- Choose grating according to wished wavelength range
- Keeping in mind that efficiency drops sharply bluewards of blaze, but slowly redwards of it: thus blaze λ should be bluewards of your wished central wavelength!!

Flat Field correction

- FF is wavelength dependant: to be done through whole spectrograph
- Needs to be normalised to 1 to conserve fluxes
- Can correct vigneting along the slit length if illumination is correct (usually not the case with dome flats)

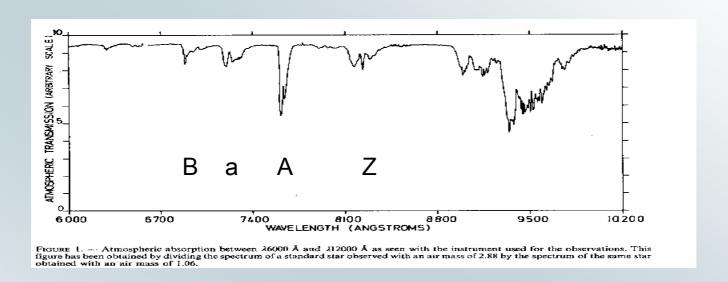

Sky emission

(from Massey et al. 1990)

- Sky is bright, specially in near-IR!!
- Needs to be subtracted
- Requires a linear detector

Importance of sky subtraction

Example of a V=16.5 QSO in the far-red


(that is almost as bright as the full moon...)

Obtained with the ESO 3.6m and Reticon diode array

Above: full spectrum Below: sky subtracted

The important features (broad Balmer lines) are completely hidden in the OH night sky lines...

Atmospheric absorptions

from Vreux, Dennefeld & Andrillat (1983)

- Due to O₂ (A, B, ..) and H₂ O (a, Z, ..) in the visible, plus CO₂, CH₄, etc... in the near-IR
- Not to confuse with stellar absorption bands...
- To correct: needs to observe a hot star (no intrinsic absorption lines)
 in the same conditions (similar airmass) and divide the object's
 spectrum by the hot star's spectrum. Saturated lines (A,...) are
 difficult to correct completely.

Standard stars (1)

Southern spectrophotometric standards for large telescopes - II

MIT 'Mascot' CCD system. The reduction procedure used a rough flux calibration which introduced some small-scale wiggles into the energy distributions, so the spectra should be used only as guides to the general continuum shape and to the locations of strong absorption lines.

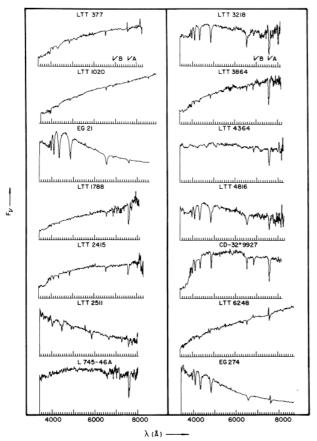


Figure 1. Standard star spectra. The positions of the atmospheric A and B absorption bands are marked.

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System

Example from Baldwin & Stone (1984)

Choose Standard with appropriate Spectral Energy Distribution
With as few absoprtion lines as possible
WD's are ideal, but faint...

Standard stars (2)

242 J. A. Baldwin and R. P. S. Stone

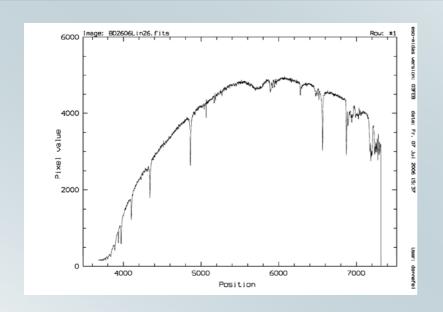
Table 1. Magnitudes per unit frequency interval (mag = $-2.5 \log f_y - 48.595$). Numbers in roman type are scanner data with standard deviations of the mean in parenthesis; italicized numbers are interpolated SIT/CCD data with standard deviations of single observations in parenthesis. Bandpasses are 80 A.

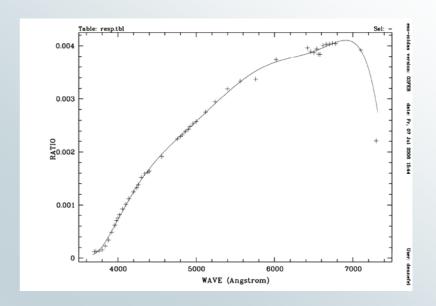
				LTT 1788	LTT 2415	LTT 2511	L745-46A	LTT 3218	LTT 3864
	LTT 377	LTT 1020	EG 21	1/17 1/88	177 2415	E17 2511	L745-46A	LTT 3218	D11 3864
							13.02(2)	11.88(1)	12.04(1)
6056	11.13(0)	11.38(0)	11.53(0)	13.04(1)	12.11(1)	14.01(2)			
6180	11,12(0)	11.35(3)	11.55(1)	22.99	12,20(1)	14.01(2)	13.01	12.92(6)	12.03(5)
6310	11,09(0)	12,34(2)	11,61(1)	12.96	12,09(2)	14,06(5)	13.02	11.85(8)	12.01(6)
6436	11,08(0)	12.30(1)	12,68(2)	12.98	12.08(2)	14,2174)	13.05	12,94(9)	11.99(6)
6640	11.08/1)	12.26/97	12.81(3)	13.03	12,11(2)	14.21(1)	23.09	12,14	11.99(1)
6790	11.06(1)	11,26(1)	11,71(1)	12.97(1)	12,06(1)	14,15(2)	13.03(2)	11,98(2)	11.98(1)
7,100	11.04(0)	12,23(2)	12.77(1)	12.92(1)	12.06(1)	14,23(4)	22,99	11.96(4)	11.95/27
7250	22.04(5)	21,23(7)	11.82(5)	12.97(1)	12.06(6)	14.24(6)	23.08		21.96(5)
7400	21.07(2)	21,22(4)	21.84(3)	22.93(2)	22.08(2)	24.30(2)	23.08	21.99(2)	21.94(4)
7550	11,03(1)	11,20(1)	11,86(1)	12,92(1)	12,04(1)	14.28(4)	13.11(1)	12.03(1)	11.93(1)
7550	11.03111	11.20117	11,00(1)	12.92(17	12.04117	14.20(4)	13-11/11/	42,03(1)	44.55(4)
200	** -0.01		11.00/21	10.00111	12,01(1)		13-12(1)	12.04(1)	11.91(1)
7780	11.02(1)	11.16(2)	11.90(1)	12.87(1)			13:12(17	12,04(1)	11.95(2)
7890	21.02(3)	21.16(2)	21.92	22.80(6)	12.00(2)				21.93(0)
7990	21.02(2)	21.15(2)	21.94	22.85(2)	12.00(3)				
8090	10.98(1)	11.13(1)	11.94(2)	12.85(2)	11.98(1)		13.13(1)	12,04(1)	11.89(1)
8180		21.23(2)	21.96						
8280		22,23713	12,00						
8370	11.01(2)	11.13(2)	12,00(0)	12.84(2)	12.00(2)		13.12(0)	12,11(2)	11.89(1)
8708	10.97(2)	11.08(1)	12.06(1)	12,80(1)	11.96(2)		13.16(1)	12,10(1)	11.87(1)
9832	10.96(2)	11.05(2)	12,18(2)	12.81(1)	11.93(0)		13.23(3)	12,23(2)	11.87(2)
10256	10.98(3)	11.08(2)	12,25(1)	***	11.93(5)			12,33(5)	11.88(1)
10400	11.02(3)	11.13(2)	12.28(2)		11,95(1)			12,30(3)	11.94(1)
À	LTT 4364	LTT 4816	CD-32* 9927	LTT 6248	BG 274	LTT 7379	LTT 7987	LTT 9239	LTT 9491
6056	11.50(0)	13,85(0)	10.41(1)	11.67(1)	11.21(1)	10.08(1)	12,37(0)	11.92(1)	14.19(1)
6180	11,51(3)	13,89(2)	20.42(2)	21,65(4)	21,24(3)	20.08(4)	12,39(4)	11.91(2)	14.18(4)
6310	12.52(3)	13,97(5)	20.44(6)	21,64(4)	11,30(2)	20.05(4)	12,44(4)	12.88(5)	14.20(3)
6436	11,52(3)	13,98(4)	20.43(2)	21,62(2)	21.33(2)	20.02(2)	12,50(5)	22.83(2)	24.19(5)
6640	11,55(3)	14,12(0)	20,48(0)	21,65(3)	21.47(5)	20,01(1)		12.81(4)	14.24(5)
6790	11,53(0)	14,01(4)	10.45(1)	11,61(0)	11,40(1)	9.97(1)	12,53(1)	11,78(1)	14.29(3)
7100	12.53(2)	14,04(1)	20.45(2)						
7250					11.46(61	9.95(2)	12.60(3)		
	12.61/21			21.59(3)	11.46(6)	9.95(2)	12.60(3)	12.74(3)	14.27(6)
	12,61(7)	14,16(3)	20.50(6)	21,60(4)	21.54(4)	9.97(8)	12,64(4)	22.72(4)	14.40(2)
7400	12,56(3)	14,16(3)	20.50(6)	21,60(4)	21.54(4)	9.97(8)	12,64(4)	12.71(4)	14.40(2)
		14,16(3)	20.50(6)	21,60(4)	21.54(4)	9.97(8)	12,64(4)	22.72(4)	14.40(2)
7400 7550	12,56(3) 11,58(1)	14.17(3)	20.50(6) 20.48(5) 10.49(1)	21,60(4) 21,59(2) 11,56(1)	21.54(4) 21.58(3) 11.60(1)	9.97(8) 9.95(5) 9.93(1)	12.64(4) 12.68(6) 12.71(2)	12.71(4) 12.70(5) 11.70(1)	14.40(2) 14.39(1) 14.39(3)
7400 7550 7780	11.56(3) 11.58(1) 11.61(1)	14,17(3)	20.50(6) 20.48(5) 10.49(1) 10.51(1)	21,60(4) 21,59(2) 11,56(1) 11,52(0)	21.54(4) 21.58(3) 11.60(1) 11.65(0)	9.97(8) 9.95(5) 9.93(1) 9.91(1)	12.64(4) 12.68(6) 12.71(2) 12.72(1)	12.71(4) 12.70(5) 11.70(1) 11.69(1)	14.40(2) 14.39(1) 14.39(3)
7400 7550 7780 7890	11,56(3) 11,58(1) 11,61(1) 11,58(6)	14,16(3) 14,17(3) 14,13(2)	20.50(6) 20.48(5) 10.49(1) 10.51(1) 20.50(1)	21,60(4) 21,59(2) 11,56(1) 11,52(0) 11,51(1)	21.54(4) 21.58(3) 11.60(1) 11.65(0) 21.66(7)	9.97(8) 9.95(5) 9.93(1) 9.91(1) 9.89(7)	12.64(4) 12.68(6) 12.71(2) 12.72(1) 12.76(2)	12.71(4) 12.70(5) 11.70(1) 11.69(1) 11.68(2)	14.40(1) 14.39(1) 14.39(3)
7400 7550 7780 7890 7990	11,58(1) 11,58(1) 11,61(1) 11,58(6) 11,63(1)	14.17(3)	10.50(6) 10.48(5) 10.49(1) 10.51(1) 10.50(1) 10.52(0)	21,60(4) 21,59(2) 11,56(1) 11,52(0) 12,51(1) 21,50(1)	21.54(4) 21.58(3) 11.60(1) 11.65(0) 21.66(7) 21.73(2)	9.97(8) 9.95(5) 9.93(1) 9.91(1) 9.89(7) 9.90(1)	12.64(4) 12.68(6) 12.71(2) 12.72(1) 12.76(2) 12.76(1)	12.72(4) 12.70(5) 11.70(1) 11.69(1) 11.68(2) 12.68(2)	14.40(2) 14.39(1) 14.39(3)
7400 7550 7780 7890 7990 8090	11.58(1) 11.58(1) 11.61(1) 11.58(6) 11.63(2) 11.64(1)	14.17(3) 14.17(3) 14.13(2) 14.09(2)	20.50(6) 20.48(5) 10.49(1) 10.51(1) 20.50(1) 20.52(0) 10.52(2)	11,60(4) 21,59(2) 11,56(1) 11,52(0) 12,51(1) 21,50(2) 11,48(0)	21.54(4) 21.58(3) 11.60(1) 11.65(0) 21.66(7) 21.73(2) 11.71(0)	9.97(8) 9.95(5) 9.93(1) 9.91(1) 9.89(7) 9.90(1) 9.89(1)	12.64(4) 12.68(6) 12.71(2) 12.72(1) 12.76(2) 12.76(1) 12.77(2)	12.71(4) 12.70(5) 11.70(1) 11.69(1) 11.68(2) 12.68(2) 11.65(1)	14.40(2) 14.39(1) 14.39(3)
7400 7550 7780 7890 7990	11,58(1) 11,58(1) 11,61(1) 11,58(6) 11,63(1)	14.17(3)	10.50(6) 10.48(5) 10.49(1) 10.51(1) 10.50(1) 10.52(0)	21,60(4) 21,59(2) 11,56(1) 11,52(0) 12,51(1) 21,50(1)	21.54(4) 21.58(3) 11.60(1) 11.65(0) 21.66(7) 21.73(2)	9.97(8) 9.95(5) 9.93(1) 9.91(1) 9.89(7) 9.90(1)	12.64(4) 12.68(6) 12.71(2) 12.72(1) 12.76(2) 12.76(1)	12.72(4) 12.70(5) 11.70(1) 11.69(1) 11.68(2) 12.68(2)	14.40(2) 14.39(1) 14.39(3)
7400 7550 7780 7890 7890 8090 8180	12,56(3) 11,58(1) 11,61(1) 12,58(6) 12,63(2) 11,64(1)	14.17(3) 14.13(2) 14.09(2)	20,50(6) 20,48(5) 10,49(1) 10,51(1) 20,50(1) 20,52(0) 10,52(2) 20,52(2)	21,60(4) 21,59(2) 11,56(1) 11,52(0) 12,51(1) 21,50(2) 11,48(0) 21,48(2)	21.54(4) 21.58(3) 11.60(1) 11.65(0) 21.66(7) 21.73(2) 11.71(0) 21.74(2)	9,97(8) 9,95(5) 9,93(1) 9,91(1) 9,89(7) 9,90(2) 9,89(1) 9,88(3)	12.64(4) 12.68(6) 12.71(2) 12.72(1) 12.76(2) 12.76(1) 12.77(2) 12.81(2)	12.71(4) 12.70(5) 11.70(1) 11.69(1) 11.68(2) 11.68(2) 11.65(1) 12.66(2)	14.40(2) 14.39(1) 14.39(3) 14.41(3)
7400 7550 7780 7890 7990 8090 8180	12,56(3) 11,58(1) 11,61(1) 21,58(6) 12,63(2) 11,64(1)	14.17(3) 14.13(2) 14.09(2)	20.50(6) 20.48(5) 10.49(1) 10.51(1) 20.50(1) 20.52(0) 10.52(2) 20.52(2) 20.52(2)	21,60(4) 21,59(2) 11,56(1) 11,52(0) 12,51(1) 21,50(2) 11,48(0) 21,48(2) 21,50(2)	21.54(4) 21.58(3) 11.60(1) 11.65(0) 21.66(7) 21.73(2) 11.71(0) 21.74(2) 21.76(0)	9,97(8) 9,95(5) 9,93(1) 9,91(1) 9,89(3) 9,90(1) 9,88(3) 9,90(2)	12.64(4) 12.68(6) 12.71(2) 12.72(1) 12.76(2) 12.76(1) 12.77(2) 12.81(2) 12.80(0)	12.71(4) 12.70(5) 11.70(1) 11.69(1) 11.68(2) 11.68(2) 11.65(1) 12.66(2) 12.61(4)	14.40(2) 14.39(1) 14.39(3) 14.41(3)
7400 7550 7780 7890 7990 8090 8180 8280 8370	12,56(3) 11,58(1) 11,61(1) 12,58(6) 12,63(2) 11,64(1)	14,16(3) 14,17(3) 14,13(2) 14,09(2) 14,19(1)	20,50(6) 20,48(5) 10,49(1) 10,51(1) 20,50(1) 20,52(0) 10,52(2) 20,92(2) 20,92(1) 20,54 10,54(1)	21,60(4) 21,52(2) 11,56(1) 11,52(0) 12,51(1) 21,50(2) 11,48(0) 21,48(2) 21,50(2) 11,49(1)	21.54(4) 21.58(3) 11.60(1) 11.65(0) 21.66(7) 21.73(2) 11.71(0) 21.74(2) 21.76(0) 11.79(1)	9.97(8) 9.95(5) 9.93(1) 9.91(1) 9.89(7) 9.89(1) 9.88(3) 9.90(2) 9.88(0)	12.64(4) 12.68(6) 12.71(2) 12.72(1) 12.76(2) 12.76(1) 12.77(2) 12.81(2) 12.82(0) 12.84(2)	12.71(4) 12.70(5) 11.70(1) 11.69(1) 11.68(2) 11.65(1) 12.66(2) 12.66(2) 11.61(4) 11.64(3)	14.40(2) 14.39(1) 14.39(3) 14.41(3)
7400 7550 7780 7890 7990 8090 8180 8280 8370 8708	12,56(3) 11,58(1) 11,61(1) 12,58(6) 11,63(2) 11,64(1) 	14.17(3) 14.17(3) 14.13(2) 	20.50(6) 20.48(5) 10.49(1) 10.51(1) 20.52(0) 10.52(2) 20.52(2) 20.52(2) 20.54(1) 10.54(1) 10.54(1)	21,60(4) 21,59(2) 11,56(1) 11,52(0) 12,51(1) 21,50(2) 11,48(0) 21,48(2) 21,50(1) 11,49(1) 11,46(1)	21.54(4) 21.58(3) 11.60(1) 11.65(0) 21.66(7) 21.73(2) 11.71(0) 21.74(2) 21.76(0) 11.79(1) 11.85(0)	9.97(8) 9.95(5) 9.93(1) 9.91(1) 9.89(7) 9.89(1) 9.88(3) 9.90(2) 9.88(0) 9.87(1)	12.64(4) 12.68(6) 12.71(2) 12.72(1) 12.76(2) 12.77(2) 12.77(2) 12.81(2) 12.80(0) 12.84(2) 12.90(1)	12.71(4) 11.70(5) 11.70(1) 11.69(1) 11.68(2) 11.65(1) 12.66(2) 11.61(4) 11.64(3) 11.64(1)	14.40(2) 14.39(3) 14.39(3) 14.41(3)
7400 7550 7780 7890 7990 8090 8180 8280 8370 8708 9832	12,56(3) 11,58(1) 11,61(1) 12,58(6) 12,63(2) 11,64(1)	14,16(3) 14,17(3) 14,13(2) 14,09(2) 14,19(1)	20,50(6) 20,48(5) 10,49(1) 10,51(1) 20,50(1) 20,52(0) 10,52(2) 20,92(2) 20,92(1) 20,54 10,54(1)	21.60(4) 21.59(2) 11.56(1) 11.52(0) 12.51(1) 11.50(1) 11.48(0) 21.48(2) 21.50(1) 11.49(1) 11.49(1) 11.46(1)	21.54(4) 21.58(3) 11.60(1) 11.65(0) 21.66(7) 11.73(2) 11.71(0) 21.74(2) 21.76(0) 11.79(1) 11.85(0) 12.04(0)	9,97(8) 9,95(5) 9,93(1) 9,91(1) 9,89(7) 9,89(1) 9,88(3) 9,90(2) 9,88(0) 9,87(1) 9,85(1)	12.64(4) 12.68(6) 12.71(2) 12.72(1) 12.76(2) 12.76(1) 12.77(2) 12.81(2) 12.82(0) 12.84(2)	12,72(4) 12,70(5) 11,70(1) 11,69(1) 11,68(2) 11,68(2) 11,65(1) 12,66(2) 12,64(4) 11,64(3) 11,61(1) 11,55(0)	14.40(2) 14.39(1) 14.39(3) 14.41(3)
7400 7550 7780 7890 7990 8090 8180 8280 8370 8708	12,56(3) 11,58(1) 11,61(1) 12,58(6) 11,63(2) 11,64(1) 	14.17(3) 14.17(3) 14.13(2) 	20.50(6) 20.48(5) 10.49(1) 10.51(1) 20.52(0) 10.52(2) 20.52(2) 20.52(2) 20.54(1) 10.54(1) 10.54(1)	21,60(4) 21,59(2) 11,56(1) 11,52(0) 12,51(1) 21,50(2) 11,48(0) 21,48(2) 21,50(1) 11,49(1) 11,46(1)	21.54(4) 21.58(3) 11.60(1) 11.65(0) 21.66(7) 21.73(2) 11.71(0) 21.74(2) 21.76(0) 11.79(1) 11.85(0)	9.97(8) 9.95(5) 9.93(1) 9.91(1) 9.89(7) 9.89(1) 9.88(3) 9.90(2) 9.88(0) 9.87(1)	12.64(4) 12.68(6) 12.71(2) 12.72(1) 12.76(2) 12.77(2) 12.77(2) 12.81(2) 12.80(0) 12.84(2) 12.90(1)	12.71(4) 11.70(5) 11.70(1) 11.69(1) 11.68(2) 11.65(1) 12.66(2) 11.61(4) 11.64(3) 11.64(1)	14.40(2) 14.39(3) 14.39(3) 14.41(3)
7400 7550 7780 7890 7990 8090 8180 8280 8370 8708 9832	11.56(3) 11.58(1) 11.61(1) 11.58(6) 11.63(1) 11.64(1) 11.67(1) 11.69(1) 11.61(1)	14,16(3) 14,17(3) 14,13(2) 	20.50(6) 20.48(5) 10.49(1) 10.51(1) 20.52(0) 10.52(2) 20.52(2) 20.52(2) 20.54 10.54(1) 10.54(1) 10.55(1)	21.60(4) 21.59(2) 11.56(1) 11.52(0) 12.51(1) 11.50(1) 11.48(0) 21.48(2) 21.50(1) 11.49(1) 11.49(1) 11.46(1)	21.54(4) 21.58(3) 11.60(1) 11.65(0) 21.66(7) 11.73(2) 11.71(0) 21.74(2) 21.76(0) 11.79(1) 11.85(0) 12.04(0)	9,97(8) 9,95(5) 9,93(1) 9,91(1) 9,89(7) 9,89(1) 9,88(3) 9,90(2) 9,88(0) 9,87(1) 9,85(1)	12.64(4) 12.68(6) 12.71(2) 12.72(1) 12.76(2) 12.76(2) 12.77(2) 12.81(2) 12.84(2) 12.84(2) 12.84(2) 13.03(2)	12,72(4) 12,70(5) 11,70(1) 11,69(1) 11,68(2) 11,68(2) 11,65(1) 12,66(2) 12,64(4) 11,64(3) 11,61(1) 11,55(0)	14.40(1) 14.79(1) 14.39(3) 14.41(3)
7400 7550 7780 7890 7990 8090 8180 8280 8370 8708 9832	11.56(3) 11.58(1) 11.61(1) 11.58(6) 11.63(1) 11.64(1) 11.67(1) 11.69(1) 11.61(1)	14,16(3) 14,17(3) 14,13(2) 	20.50(6) 20.48(5) 10.49(1) 10.51(1) 20.52(0) 10.52(2) 20.52(2) 20.52(2) 20.54 10.54(1) 10.54(1) 10.55(1)	21.60(4) 21.59(2) 11.56(1) 11.52(0) 12.51(1) 11.50(1) 11.48(0) 21.48(2) 21.50(1) 11.49(1) 11.49(1) 11.46(1)	21.54(4) 21.58(3) 11.60(1) 11.65(0) 21.66(7) 11.73(2) 11.71(0) 21.74(2) 21.76(0) 11.79(1) 11.85(0) 12.04(0)	9,97(8) 9,95(5) 9,93(1) 9,91(1) 9,89(7) 9,89(1) 9,88(3) 9,90(2) 9,88(0) 9,87(1) 9,85(1)	12.64(4) 12.68(6) 12.71(2) 12.72(1) 12.76(2) 12.76(2) 12.77(2) 12.81(2) 12.84(2) 12.84(2) 12.84(2) 13.03(2)	12,72(4) 12,70(5) 11,70(1) 11,69(1) 11,68(2) 11,68(2) 11,65(1) 12,66(2) 12,64(4) 11,64(3) 11,61(1) 11,55(0)	14.40(1) 14.79(1) 14.39(3) 14.41(3)

In contrast to our earlier results, we emphasize that all of the SIT/CCD points are now interpolated. The elimination of any extrapolation should significantly improve the accuracy of the calibration in the region $\lambda\lambda$ 7780–8280.

For completeness, Table 1 includes the previous scanner results for $\lambda\lambda\,6056$ and 6790. The new scanner observations have been combined with the old ones where they overlapped at $\lambda\,7550$. Generally the agreement between the two data sets was excellent, so those values are little changed.

For the three stars which are faintest in the red our results do not extend all the way to $\lambda 10 \, 400$. In addition, the two longest wavelength points were discarded for two other stars because of excessively large internal errors.

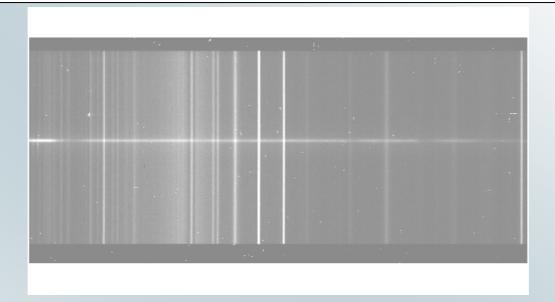

Fig. 1 shows spectra of the 18 new standards and of nine standard stars from the list of Stone (1977). The observations were made with the CTIO SIT-Vidicon systems and with the


© Royal Astronomical Society • Provided by the NASA Astrophysics Data System

Check that:

- The sampling is appropriate
- The wavelength range covers your needs (carefull in the far-red...!)

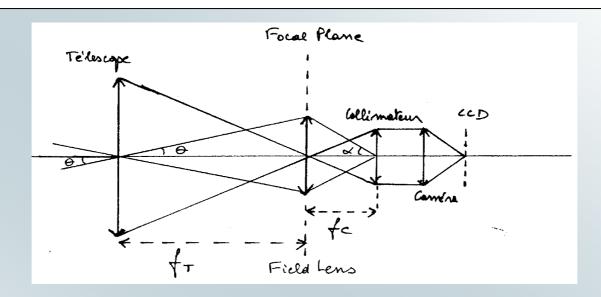
Response curve



One needs to understand the origin of the shape (grating curve, detector's response, etc..) before deciding fitting method (poly, spline) and smoothing parameter.

Assumes FF has removed small scale features

Extraction of spectrum

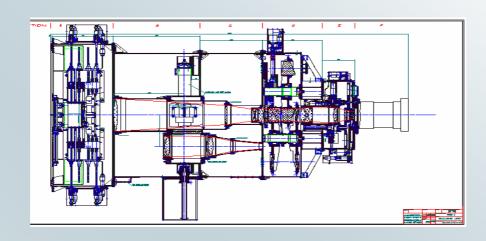

- Assumes Offset and FlatField corrected
- 2D wavelength calibration (corrects distortion)
- See if vignetting (transmission changes along the slit); can be corrected by the FF
- Simple sum, or weighted sum of object lines
- Sky subtraction (average on both sides of object)

Summary of operations

$$S_*$$
 (ADU) = $G_{x,y} F_* . t + O_f$ (Dark current negligible)
 $S_{FF} = G_{x,y} F_{FF} . t' + O_f$

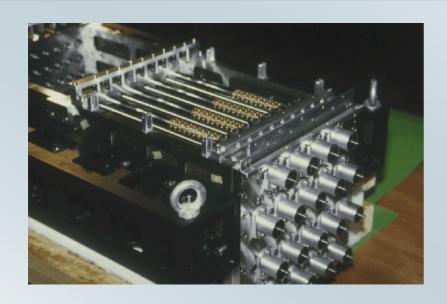
- Do $F_*/F_{FF} = (S_* O_f)/(S_{FF} O_f)$. t'/t and same for Standard star
- Cosmic rays correction
- Wavelength calibration
- Extraction of spectrum (with sky subtraction)
- Extinction correction
- Division by the response curve
 - final spectrum in absolute units

Focal Reducer

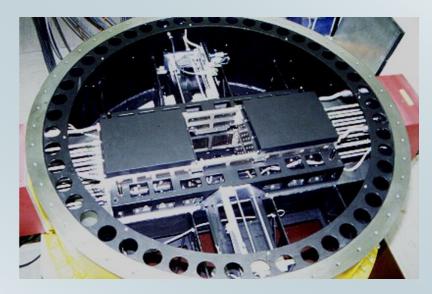


- Spectrograph is 'straightened' out, thus grating works in transmission instead of reflection
- Field of view (2θ) defined by field lens:

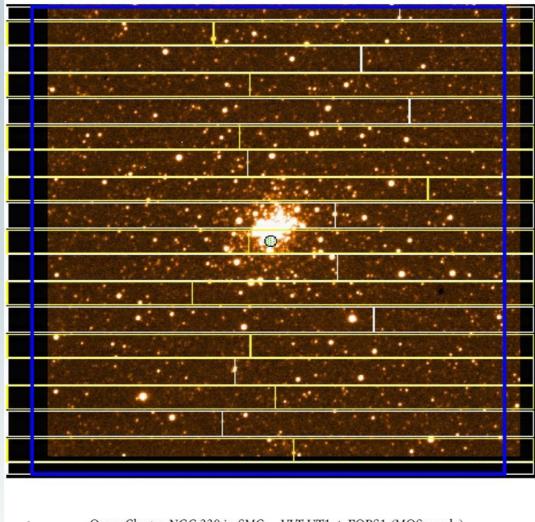
 $D_{FL} = 2f_T \theta = 2f_c \alpha$ Final focal length $f' = m'_{cam} D_T$ Reduction factor is m_{Tel} / m'_{cam}


To keep exit rays 'on axis', one adds a lens or a prism to the grating: grens, or grism!

Focal reducer (2)

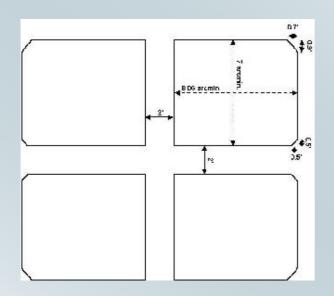

- Parallel beam: can introduce filters (in particular interference filters), gratings, Fabry-Perot's, polarimeters, etc...
- Very versatile instrument
- Entrance plate (telescope focal plane) versatile too
- Exemple of FORS/VLT (with slits or masks)

Slits, or masks?

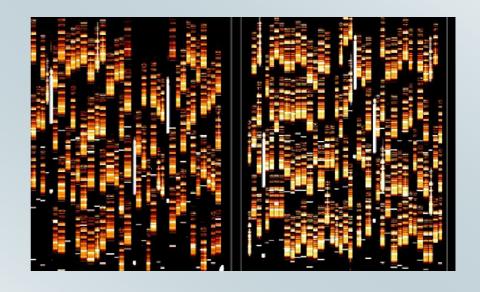


19 slits, fixed length

~30 slits, variable length

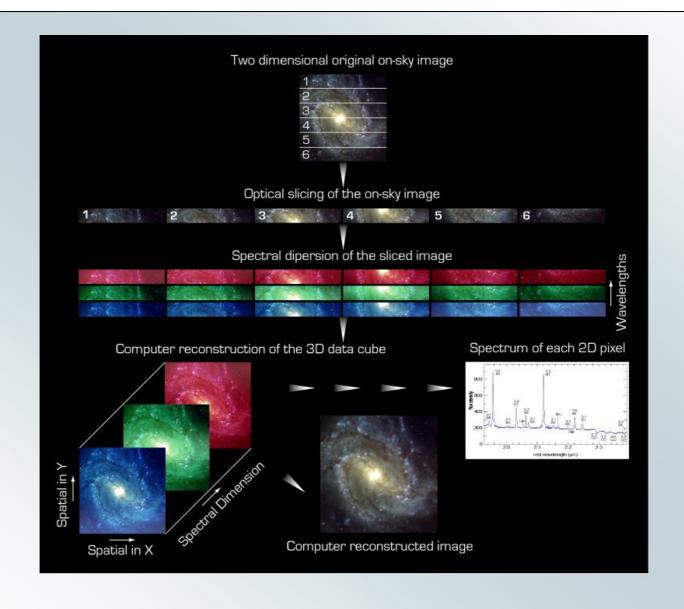


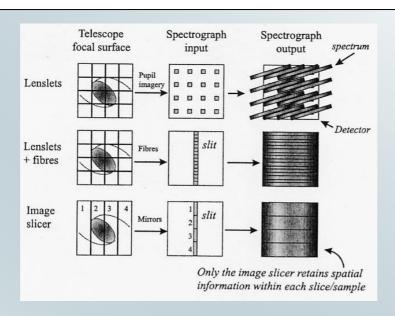
Exemple of multi-objects (slits)


Field of view: ~ 7' Open Cluster NGC 330 in SMC - VLT UT1 + FORS1 (MOS-mode)

Multi-objects (masks)

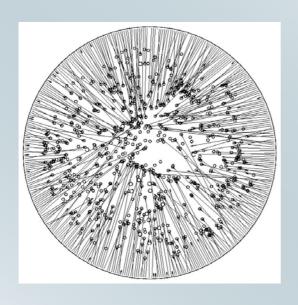
For larger fields of view: Vimos: several quadrants, with independent optics and cameras (gaps in the field!)


Two quadrants, with about 100 slits in each mask

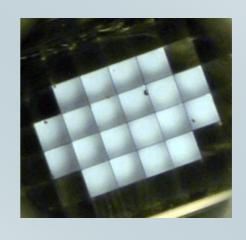

Spectroscopic modes

SOURCE	SPECTROGRAPHIC MODES	VLT INSTRUMENTS
L.S.S. Extended Continuum	y → 1	ISAAC FORS1/2 CONICA VISIR
S.I.S. Extended Emission	~0'.5	CONICA
C.D.E.S. Single Point Continuum	~2"	UVES CRIRES
M.O.S. Diluted Point Continuum	~30'	FORS 1/2 NIRMOS/ VIMOS GIRAFFE
I.F.S. Single Small Continuum	~4"	GIRAFFE SINFONI

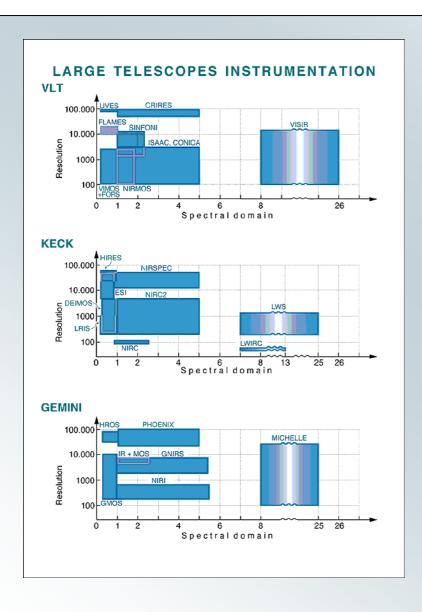
Integral field spectroscopy



Different modes (1)

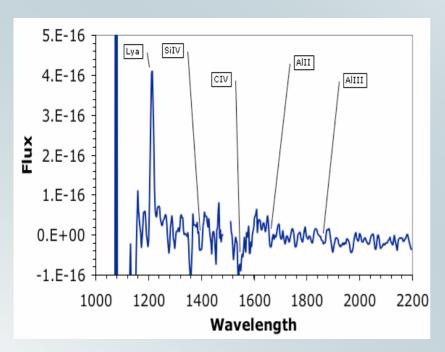

- Image slicer retains spatial information within each slice. Is used also for stellar spectroscopy with high-resolution (e.g. 1.52m at OHP)
- FOV limited because total number of pixels in detector is limited (must contain x . y . z)

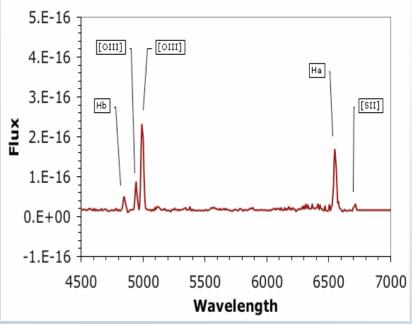
Different modes (2)



Wide field: fibers (here 2dF) Discontinued sampling (Medusa mode)

Continued sampling: IFU with lenslets Small field of view (a few ')




Comparison of various telescopes

- Instrumentation plans are rather similar
- What makes the difference is the efficiency of the instrumentation
- E.g. UVES versus
 HIRES, or
 SuprimCam versus?
- Specialisation progressing...

Example of GALEX + VIMOS

Starburst in the Chandra Deep Field South observed by GALEX in UltraViolet and by VIMOS (http://cencosw.oamp.fr/)
A clear Lyman α emission is detected in the spectrum of this galaxy at a redshift z = 0.2258.

end of the presentation